The purpose of this paper is to prove a fixed-point theorem for selfmap of a compact D*-metric space, and we show that a fixed point theorem of metric space proved by Brain Fisher ([5], Theorem 2) follows as a particular case of our theorem
Download PDF
References
- Ahmad, B., Ashraf, M., & Rhoades, B. E. (2001). Fixed point theorems for expansive mappings in D-metric spaces. Indian Journal of Pure and Applied Mathematics, *30*(10), 1513–1518.
- Dhage, B. C. (1992). Generalised metric spaces and mappings with fixed point. Bulletin of the Calcutta Mathematical Society, *84*(4), 329–336.
- Dhage, B. C. (1999). A common fixed point principle in D-metric spaces. Bulletin of the Calcutta Mathematical Society, *91*(6), 475–480.
- Dhage, B. C., Pathan, A. M., & Rhoades, B. E. (2000). A general existence principle for fixed point theorems in D-metric spaces. International Journal of Mathematics and Mathematical Sciences, *23*(7), 441–448. https://doi.org/10.1155/S0161171200003118
- Fisher, B. (1978). A fixed point theorem for compact metric spaces. Publicationes Mathematicae Debrecen, *25*, 193–194.
- Naidu, S. V. R., Rao, K. P. R., & Srinivasa Rao, N. (2004). On the topology of D-metric spaces and generalization of D-metric spaces from metric spaces. International Journal of Mathematics and Mathematical Sciences, *2004*(51), 2719– 2740. https://doi.org/10.1155/S0161171204401854
- Naidu, S. V. R., Rao, K. P. R., & Srinivasa Rao, N. (2005). On the concepts of balls in a D-metric space. International Journal of Mathematics and Mathematical Sciences, *2005*(1), 133–141. https://doi.org/10.1155/IJMMS.2005.133
- Naidu, S. V. R., Rao, K. P. R., & Srinivasa Rao, N. (2005). On convergent sequences and fixed point theorems in D-metric spaces. International Journal of Mathematics and Mathematical Sciences, *2005*(12), 1969– 1988. https://doi.org/10.1155/IJMMS.2005.1969
- Sedghi, S., Shobe, N., & Zhou, H. (2007). A common fixed point theorem in D*-metric spaces. Fixed Point Theory and Applications, *2007*, Article ID 027906. https://doi.org/10.1155/2007/27906
Back