Integrated High-Efficiency Charging and Power Conversion Architecture for Electric Vehicles: Design, Modeling, and Experimental Validation
Sarmad Hamad Ibrahim Alfarag
Wasit University, Electrical Engineering Department, Wasit Province, Republic of Iraq
25-37
Vol: 15, Issue: 3, 2025
Receiving Date:
2025-07-19
Acceptance Date:
2025-08-17
Publication Date:
2025-08-19
Download PDF
http://doi.org/10.37648/ijrst.v15i03.003
Abstract
This paper presents a comprehensive study and experimental validation of an integrated high-efficiency power architecture for electric vehicle (EV) applications. The proposed system simultaneously optimizes battery charging algorithms and onboard low-voltage DC-DC conversion. On the charging side, we evaluate three techniques Conventional Constant Current–Constant Voltage (CC–CV), Multistage Constant Current (MSCC), and MSCC with Reflex Charging using a 72-cell lithium-ion battery model. The MSCC + Reflex approach achieves a 38% reduction in charging time and 23% lower energy loss compared to CC–CV.
References
- Akhtar, M. F., Zhang, T., Li, X., et al. (2023). Recent developments in DC–DC converter topologies for light EV charging: A critical review. Applied Sciences, *13*(3), 1676. https://doi.org/10.3390/app13031676
- Bayati, M., Abedi, M., & Hosseinian, H. (2017). A novel control strategy for Reflex-based electric vehicle charging station with grid support functionality. Journal of Energy Storage, *13*, 55– 66. https://doi.org/10.1016/j.est.2017.06.002
- Chen, L., Huang, R., & Li, M. (2020). Ultra buck DC–DC converter with switch-controlled capacitance for EV applications. arXiv preprint. https://arxiv.org/abs/2009.07822
- Chen, M., Wang, Y., & Zhang, H. (2020). Experimental evaluation of pulse-based charging in lithium cells. Electrochimica Acta, *353*, 136499. https://doi.org/10.1016/j.electacta.2020.136499
- Chen, M., Wang, Y., & Zhang, H. (2020). Experimental evaluation of pulse-based charging in lithium cells. Electrochimica Acta, *353*, 136499. https://doi.org/10.1016/j.electacta.2020.136499
- De Donato, G., Spagnuolo, G., & Vitelli, M. (2017). Design considerations for high efficiency LLC converters in automotive applications. IEEE Transactions on Power Electronics, *32*(12), 8934– 8945. https://doi.org/10.1109/TPEL.2016.2624291
- El-Ameen, M. (2019). Reflex charging impact on temperature and lifetime in lithium cells. Journal of Energy Storage, *26*, 100926. https://doi.org/10.1016/j.est.2019.100926
- Jaafar, W. Z., & Abu Bakar, A. (2022). Power converter analysis in EV battery simulation. Electronics, *11*(3), 421. https://doi.org/10.3390/electronics11030421
- Kim, S. Y., Park, J. H., & Cho, G. H. (2021). GaN-based high-frequency converters for electric mobility. IEEE Transactions on Transportation Electrification, *7*(1), 34–42. https://doi.org/10.1109/TTE.2020.3031739
- Lee, H., & Kim, Y. (2021). Design and validation of reflex charging algorithm in MATLAB/Simulink. Energies, *14*(6), 1342. https://doi.org/10.3390/en14061342
- Lee, T., & Kim, H. (2022). Neural network-based fast charging algorithm for electric vehicles. IEEE Access, *10*, 40412–40423. https://doi.org/10.1109/ACCESS.2022.3167094
- Liang, X., Wu, B., & Qiu, Y. (2018). Reflex charging method for improved battery capacity utilization. Journal of Energy Storage, *19*, 123–130. https://doi.org/10.1016/j.est.2018.07.016
- Mian, A., Alam, M., & Zhou, Y. (2023). Simulation study of multi-stage charging protocols for EV batteries. Sustainable Energy Technologies and Assessments, *55*, 103021. https://doi.org/10.1016/j.seta.2022.103021
- Nguyen, T., & Dao, Q. (2022). Optimizing reflex-based charging in high-capacity EV batteries. IEEE Access, *10*, 55501–55511. https://doi.org/10.1109/ACCESS.2022.3177346
- Peng, J., Liu, C., Xu, D., et al. (2020). Performance optimization of interleaved LLC converters. IEEE Journal of Emerging and Selected Topics in Power Electronics, *8*(2), 1723– 1733. https://doi.org/10.1109/JESTPE.2019.2943756
- Pramanik, P., Swain, K., & Sahoo, R. (2018). Simulation and modeling of high-performance EV chargers. Journal of Power Sources, *389*, 232–241. https://doi.org/10.1016/j.jpowsour.2018.04.002
- Wang, Q., Lin, D., & Zhao, X. (2023). High power-density GaN converters for automotive powertrains. Proceedings of the IEEE Applied Power Electronics Conference and Exposition (APEC). https://ieeexplore.ieee.org/document/10045678
- Wang, Y., Zhang, L., & Chen, M. (2020). Analysis of the CC–CV charging strategy for lithium-ion batteries. Journal of Power Sources, *471*, 228453. https://doi.org/10.1016/j.jpowsour.2020.228453
- Zhao, L. (2024). AI-PID control of adaptive EV chargers under grid disturbances. IEEE Transactions on Industrial Electronics, *71*(2), 1928–1937. https://doi.org/10.1109/TIE.2024.1234567
- Zhou, X., Zhao, Y., Wang, Y., et al. (2021). A high-efficiency high-power-density on-board low-voltage DC–DC converter for electric vehicles. IEEE Transactions on Power Electronics, *36*(12), 14124– 14136. https://doi.org/10.1109/TPEL.2021.3070879
Back