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ABSTRACT 

In this paper, the author studied, oscillatory and asymptotic behavior of bounded solutions of a class of fourth order 

dynamic equation with quasi-derivative of the form. 

𝐷4 (𝑥(𝑡) + 𝑓(𝑡)𝑥(𝛼1(𝑡))) + 𝑔(𝑡)𝐺 (𝑥(𝛼2(𝑡))) − ℎ(𝑡)𝐻 (𝑥(𝛼3(𝑡))) = 0 

and  

𝐷4 (𝑥(𝑡) + 𝑓(𝑡)𝑥(𝛼1(𝑡))) + 𝑔(𝑡)𝐺 (𝑥(𝛼2(𝑡))) − ℎ(𝑡)𝐻 (𝑥(𝛼3(𝑡))) = 𝑘(𝑡) 

for 𝑡 ∈ [𝑡0,∞)𝕋,  𝕋 is a time scale with sup 𝕋 = +∞ , 𝑡0(≥ 0) ∈ 𝕋 are studied under the assumption 

∫
1

𝑝𝑛(𝑡)
∆𝑡 < ∞, 𝑛 = 1, 2, 3

∞

𝑡0

 

for various ranges of 𝑓(𝑡), where 𝐷𝑛𝑢(𝑡) = 𝑝𝑛𝐷𝑛−1
∆ 𝑢(𝑡), 𝑛 = 1, 2, 3. 

Keywords: dynamic equation; neutral; delay; asymptotic; oscillation; positive and negative coefficients; bounded 

solution. 

 

1. Introduction 

Kusano and Naito [2]  studied a differential equation of the form 

(𝑟(𝑡)𝑦′′(𝑡))
′′

+ 𝑦(𝑡)𝐹(𝑦2(𝑡), 𝑡) = 0 

under the following assumptions. 

(i)  𝑟(𝑡) is  positive and continuous for  𝑡 ≥ 𝑡0. 

(ii) y(t) F(y2(t),t) is continuous for ( ) , 0y t t  and F(z, t) is positive for 𝑧 > 0, 𝑡 ≥ 𝑡0 and ∫
1

𝑟(𝑡)
𝑑𝑡 < ∞

∞

𝑡0
.  

In [3], Panigrahi and Ramireddy have studied the oscillatory and asymptotic behavior of solutions of 

(𝑟(𝑡)(𝑦(𝑡) + 𝑝(𝑡)𝑦(𝛼(𝑡)))
∆2

)
∆2

+ 𝑞(𝑡)𝐺(𝑦(𝛽(𝑡))) = 0   (1) 

and 

(𝑟(𝑡)(𝑦(𝑡) + 𝑝(𝑡)𝑦(𝛼(𝑡)))
∆2

)
∆2

+ 𝑞(𝑡)𝐺(𝑦(𝛽(𝑡))) = 𝑓(𝑡)                  (2) 

for 𝑡 ∈ [𝑡0,∞)𝕋, and in [4], Panigrahi et. al. have been studied the oscillatory and asymptotic behaviour of solutions 

of  

(𝑟(𝑡)(𝑦(𝑡) + 𝑝(𝑡)𝑦(𝛼(𝑡)))
∆2

)
∆2

+ 𝑞(𝑡)𝐺(𝑦(𝛽(𝑡))) − ℎ(𝑡)𝐻(𝑦(𝛾(𝑡))) = 0            (3) 

and 

 
1 How to cite the article: Pasupula R; September 2024; Oscillation of a Class of Fourth Order Dynamic Equations With Quasi Derivatives; 

International Journal of Research in Science and Technology, Vol 14, Issue 3, 47-54; DOI: http://doi.org/10.37648/ijrst.v14i03.007 

http://www.ijrst.com/


International Journal of Research in Science and Technology                                           http://www.ijrst.com 

  

(IJRST) 2024, Vol. No. 14, Issue No. 3, Jul-Sep                                       e-ISSN: 2249-0604, p-ISSN: 2454-180X 

 

48 

 
INTERNATIONAL JOURNAL OF RESEARCH IN SCIENCE AND TECHNOLOGY 

 

(𝑟(𝑡)(𝑦(𝑡) + 𝑝(𝑡)𝑦(𝛼(𝑡)))
∆2

)
∆2

+ 𝑞(𝑡)𝐺(𝑦(𝛽(𝑡))) − ℎ(𝑡)𝐻 (𝑦(𝛾(𝑡))) = 𝑓(𝑡)   (4) 

for 𝑡 ∈ [𝑡0,∞)𝕋, under the assumption 

 ∫
𝜎(𝑡)

𝑟(𝑡)
∆𝑡 < ∞

∞

𝑡0
. 

 Throughout this paper, for the standard notations and terminology from the time scale calculus will be used [5,6]. 

In this paper, we consider a class of  fourth order dynamic equations with quasi derivative of the form  

𝐷4 (𝑥(𝑡) + 𝑓(𝑡)𝑥(𝛼1(𝑡))) + 𝑔(𝑡)𝐺 (𝑥(𝛼2(𝑡))) − ℎ(𝑡)𝐻 (𝑥(𝛼3(𝑡))) = 0  (5) 

and  

𝐷4 (𝑥(𝑡) + 𝑓(𝑡)𝑥(𝛼1(𝑡))) + 𝑔(𝑡)𝐺 (𝑥(𝛼2(𝑡))) − ℎ(𝑡)𝐻 (𝑥(𝛼3(𝑡))) = 𝑘(𝑡)    (6) 

for various ranges of 𝑓(𝑡), with the condition 

(A0) ∫
1

𝑝𝑛(𝑡)
∆𝑡 < ∞, 𝑛 = 1,2,3

∞

𝑡𝑜

 

where 𝑝𝑛 ∈ 𝐶([𝑡0,∞)𝕋, (0, ∞)) and  𝑓, 𝑘 ∈ 𝐶𝑟𝑑([𝑡0,∞)𝕋, ℝ);  

 𝑔, ℎ ∈ 𝐶𝑟𝑑([𝑡0,∞)𝕋, (0, ∞)); 𝐺, 𝐻 ∈ 𝐶 (ℝ, ℝ) satisfy 𝑢G(𝑢) > 0, 𝑢H(𝑢) > 0 for 𝑢 ≠ 0; 𝐺 is non decreasing, 𝐻 is 

bounded; and 𝛼1, 𝛼2, 𝛼3 ∈ 𝐶𝑟𝑑(𝕋, 𝕋) are strictly increasing functions such that 

𝑙𝑖𝑚
𝑡→∞

 𝛼1(𝑡) = 𝑙𝑖𝑚
𝑡→∞

 𝛼2(𝑡) = 𝑙𝑖𝑚
𝑡→∞

 𝛼3(𝑡) = ∞, 𝛼1(𝑡) ≤ 𝑡, 𝛼2(𝑡) ≤ 𝑡, 𝛼3(𝑡) ≤ 𝑡. 

 

We define the time scale interval [𝑡0,∞)𝕋 = [𝑡0,∞) ∩ 𝕋 . For (5) and (6), we define the quasi derivative as follows. 

Let 𝑦(𝑡) = 𝑥(𝑡) + 𝑓(𝑡)𝑥(𝛼1(𝑡)),  𝐷𝑜𝑦(𝑡) = 𝑦(𝑡),  𝐷1𝑦(𝑡) = 𝑝1(𝑡) 𝐷𝑜
∆𝑦(𝑡),  𝐷2𝑦(𝑡) =

𝑝2(𝑡) 𝐷1
∆𝑦(𝑡),  𝐷3𝑦(𝑡) = 𝑝3(𝑡) 𝐷2

∆𝑦(𝑡),  𝐷4𝑦(𝑡) =  𝐷3
∆𝑦(𝑡). Clearly, if 𝑝2(𝑡) = 𝑟(𝑡) and 𝑝1(𝑡) = 𝑝3(𝑡) = 1, then 

the equations (5) and (6) reduces to (3) and (4) respectively. 

 

Let 𝑡−1 = 𝑖𝑛𝑓
𝑡∈[𝑡0,∞)𝕋

{𝛼1(𝑡), 𝛼2(𝑡), 𝛼3(𝑡)}. By a solution of ( ) ( )5 6 , we mean a function 𝑥 ∈ 𝐶𝑟𝑑([𝑡0,∞)𝕋, ℝ) such that 

𝑥(𝑡) + 𝑓(𝑡)𝑥(𝛼1(𝑡)) is continuously delta differentiable, D1, D2, D3 are differentiable operators and ( ) ( )5 6 are 

satisfied for 𝑡 ≥ 𝑡0. A solution of ( ) ( )5 6 is said to be oscillatory if there exists a sequence {𝑠𝑛}  in [𝑡0,∞)𝕋  such 

that 𝑥(𝑠𝑛)𝑥(𝜎(𝑠𝑛))   ≤ 0 ; Otherwise, it is called non oscillatory. 

 

2. Existence Lemmas and Remarks. 

 This section deals with the existence Lemma, Remarks and the conditions which can be used to prove the  

theorems in section 3. 

LEMMA 1. [3] Let 𝐹, 𝐻, 𝑝: [𝑡0,∞)𝕋 → ℝ such that 

𝐹(𝑡) = 𝐻(𝑡) + 𝑝(𝑡)𝐻(𝛼(𝑡)) for 𝑡 ∈ [𝑡^, ∞)𝑇  

where  ∈𝑡
 [𝑡0,∞)𝕋 and  𝛼(𝑡) ≥ 𝑡0 for all 𝑡 ∈ [𝑡

, ∞)𝕋. Assume that, there exists numbers 

𝑝1, 𝑝2,  𝑝3, 𝑝4 ∈ ℝ such that p(t) is one of the following ranges. 

(1) −∞ < 𝑝1 ≤ 𝑝(𝑡) ≤ 0  (2)  0 < 𝑝(𝑡) ≤ 𝑝2 ≤ 1
  

(3)  1 < 𝑝3 ≤ 𝑝(𝑡) ≤ 𝑝4 < ∞ 

 

Suppose that 𝐻(𝑡) > 0 for large 𝑡 ∈ [𝑡0,∞)𝕋, lim inf
𝑡→∞

 𝐻(𝑡) = 0 and that 𝑙𝑖𝑚
𝑡→∞

 𝐹(𝑡) = 𝐿 ∈ ℝ exists. Then 𝐿 = 0. 

 

The following assumptions have been used to prove the  theorems in Section 3. 

(𝐴1)  ∫
1

𝑝1(𝑠1)

∞

𝑡0
 ∫

1

𝑝2(𝑠2)

∞

𝑠1
 ∫

1

𝑝3(𝑠3)

∞

𝑠2
 ∫ ℎ(𝜃)

∞

𝑠3
 ∆𝜃∆𝑠3∆𝑠2∆𝑠1 < ∞ ; 

 (𝐴2) ∫
1

𝑝1(𝑠1)

∞

𝑡0
 ∫

1

𝑝2(𝑠2)

𝑠1

𝑡0
 ∫

1

𝑝3(𝑠3)

𝑠2

𝑡0
 ∫ 𝑔(𝜃)

𝑠3

𝑡0
 ∆𝜃∆𝑠3∆𝑠2∆𝑠1 = ∞ ; 

(𝐴3)  ∫
1

𝑝2(𝑠2)

∞

𝑡0
 ∫

1

𝑝3(𝑠3)

𝑠2

𝑡0
 ∫ 𝑔(𝜃)

𝑠3

𝑡0
 ∆𝜃∆𝑠3∆𝑠2 = ∞ ; 

(𝐴4)   ∫
1

𝑝3(𝑠3)

∞

𝑡0
 ∫ 𝑔(𝜃)

𝑠3

𝑡0
 ∆𝜃∆𝑠3 = ∞ ; 

http://www.ijrst.com/
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 (𝐴5) 𝐺(−𝑢) = −𝐺(𝑢), 𝐻(−𝑢) = −𝐻(𝑢) for all 𝑢 ∈ 𝑅; 

(𝐴6) ∫ 𝑔(𝜃)∆𝜃 = ∞.
∞

𝑡0
 

 

 

REMARK 1. 

 Note that,  (𝐴2) and (𝐴0) implies (𝐴3),  (𝐴3)  and (𝐴0)  implies (𝐴4)  and also  (𝐴4) and (𝐴0)   implies (𝐴6). 

We will prove that, (𝐴2)  and (𝐴0)  implies (𝐴3)  (other two results can be proved similarly, hence omitted). Assume, 

(𝐴2)  and (𝐴0)  hold, but (𝐴3)  does not hold. That is 

∫
1

𝑝2(𝑠2)

∞

𝑡0
 ∫

1

𝑝3(𝑠3)

𝑠2

𝑡0
 ∫ 𝑔(𝜃)

𝑠3

𝑡0
 ∆𝜃∆𝑠3∆𝑠2 < ∞.  

Let the limit be l0. By the definition of limit, for each 𝜖 > 0, there exists 𝑠1>𝑡0 such that 

∫
1

𝑝2(𝑠2)

𝑠1

𝑡0
 ∫

1

𝑝3(𝑠3)

𝑠2

𝑡0
 ∫ 𝑔(𝜃)

𝑠3

𝑡0
 ∆𝜃∆𝑠3∆𝑠2 < 𝑙0 + ϵ. 

Multiplying both sides by 
1

𝑝1(𝑠1)
 and integrating the inequality from 𝑇 to t, we obtain 

0 ≤ ∫
1

𝑝1(𝑠1)

𝑡

𝑇
∫

1

𝑝2(𝑠2)

𝑠1

𝑇
 ∫

1

𝑝3(𝑠3)

𝑠2

𝑇
 ∫ 𝑔(𝜃)

𝑠3

𝑇
 ∆𝜃∆𝑠3∆𝑠2∆𝑠1 < (𝑙0 + ϵ) ∫

1

𝑝1(𝑠1)

𝑡

𝑇
∆𝑠1  . 

Taking limit as t→∞, and using (𝐴0), we obtain 

0 ≤ ∫
1

𝑝1(𝑠1)

∞

𝑡0

∫
1

𝑝2(𝑠2)

𝑠1

𝑡0

 ∫
1

𝑝3(𝑠3)

𝑠2

𝑡0

 ∫ 𝑔(𝜃)

𝑠3

𝑡0

 ∆𝜃∆𝑠3∆𝑠2∆𝑠1 < ∞ 

which is a contradiction to (𝐴2). 

 

REMARK 2. Let 𝑢 be a continuously delta-differentiable function on [𝑡0,∞)𝕋 such that 𝐷1𝑢, 𝐷2𝑢, 𝐷3𝑢 are 

continuously delta-differentiable functions and 𝐷4𝑢 ≤ 0(≢ 0)  for large 𝑡, then any one of the following eight cases 

(a)-(h) holds, where 

(a) 𝐷1𝑢(𝑡) > 0, 𝐷2𝑢(𝑡) > 0 and 𝐷3𝑢(𝑡) > 0; 

(b) 𝐷1𝑢(𝑡) > 0, 𝐷2𝑢(𝑡) < 0 and 𝐷3𝑢(𝑡) > 0; 

(c)  𝐷1𝑢(𝑡) < 0, 𝐷2𝑢(𝑡) < 0 and 𝐷3𝑢(𝑡) > 0; 

(d)  𝐷1𝑢(𝑡) < 0, 𝐷2𝑢(𝑡) < 0 and 𝐷3𝑢(𝑡) < 0; 

 (e)  𝐷1𝑢(𝑡) < 0, 𝐷2𝑢(𝑡) > 0 and 𝐷3𝑢(𝑡) > 0; 

 (f)  𝐷1𝑢(𝑡) < 0, 𝐷2𝑢(𝑡) > 0 and 𝐷3𝑢(𝑡) < 0; 

 (g)  𝐷1𝑢(𝑡) > 0, 𝐷2𝑢(𝑡) > 0 and 𝐷3𝑢(𝑡) < 0; 

 (h) 𝐷1𝑢(𝑡) > 0, 𝐷2𝑢(𝑡) < 0 and 𝐷3𝑢(𝑡) < 0 

 

3. Oscillation Criteria for Homogenous Equation with ∫
𝟏

𝒑𝒏(𝒕)
∆𝒕 < ∞

∞

𝒕𝟎
,   𝒏 = 𝟏, 𝟐, 𝟑. 

In this section, we find sufficient conditions for obtaining the oscillatory and asymptotic behaviour of bounded 

solution of (5) with the condition (𝐴0). 

 

THEOREM 1:  Let 0 ≤ 𝑓(𝑡) ≤ 𝑓1 < 1 or 1 < 𝑓2 ≤ 𝑓(𝑡) ≤ 𝑓3 < ∞ holds. If (𝐴0) − (𝐴2)  and (𝐴5) holds, then 

every bounded solution of (5) either oscillates or converges to zero as t→. 

 

Proof: Assume the contrary that, 𝑥(𝑡) is a non-oscillatory bounded solution of (5) such that 𝑥(𝑡) > 0 for 𝑡 ≥ 𝑡0. Then 

there exists 𝑡1 ∈ [𝑡0,∞)𝕋 such that 𝑥(𝑡), 𝑥(𝛼1(𝑡)), 𝑥(𝛼2(𝑡)), 𝑥(𝛼3(𝑡)) are all positive for 𝑡 ≥ 𝑡1. Setting 

𝑦(𝑡) = 𝑥(𝑡) + 𝑓(𝑡)𝑥(𝛼1(𝑡))                  (7) 

and 𝑗(𝑡) = ∫
1

𝑝1(𝑠1)

∞

𝑡
∫

1

𝑝2(𝑠2)
∫

1

𝑝3(𝑠3)
∫ ℎ(𝜃)𝐻 (𝑥(𝛼3(𝜃)))

∞

𝑠3

∞

𝑠2

∞

𝑠1
∆𝜃∆𝑠3∆𝑠2∆𝑠1  (8) 

Notice that condition (𝐴1), and the fact that 𝐻 is a bounded function implies that 𝑗(𝑡) exists for all 𝑡. Now, if we let 

𝑧(𝑡) = 𝑦(𝑡) − 𝑗(𝑡) = 𝑥(𝑡) + 𝑓(𝑡)𝑥(𝛼1(𝑡)) − 𝑗(𝑡)     (9)          

Then, (5) changes to 

  𝐷4𝑧(𝑡) = −𝑔(𝑡)𝐺 (𝑥(𝛼2(𝑡))) ≤ 0(≢ 0)                         (10) 
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for 𝑡 ∈ [𝑡1,∞)𝕋. Consequently, 𝑧(𝑡), 𝐷1𝑧(𝑡), 𝐷2𝑧(𝑡),  and 𝐷3𝑧(𝑡) are monotonic functions on [𝑡1,∞)𝕋. Then any one 

of the cases (𝑎) − (ℎ) holds. Since 𝑗∆(𝑡) < 0, so 𝑗(𝑡) is monotonic and also 𝑙𝑖𝑚
𝑡→∞

 𝑗(𝑡) = 0. Since 𝑥(𝑡), 𝑓(𝑡) and 𝑗(𝑡) 

are bounded, it follow that 𝑦(𝑡) is bounded. Consequently, 𝑧(𝑡) is also bounded and 𝑙𝑖𝑚
𝑡→∞

 𝑦(𝑡)and 𝑙𝑖𝑚
𝑡→∞

 𝑧(𝑡)  both 

exists and finite. 

 

 

Case I. First, suppose that 𝑧(𝑡) < 0 for 𝑡 ≥ 𝑡2 > 𝑡1, then −∞ < 𝑙𝑖𝑚
𝑡→∞

 𝑧(𝑡) ≤ 0. 

If −∞ < 𝑙𝑖𝑚
𝑡→∞

 𝑧(𝑡) < 0, then −∞ < 𝑙𝑖𝑚
𝑡→∞

 𝑦(𝑡) < 0, which is a contradiction as 𝑥(𝑡) and 𝑓(𝑡) are positive. If 

𝑙𝑖𝑚
𝑡→∞

 𝑧(𝑡) = 0, then from (9), we have 𝑙𝑖𝑚
𝑡→∞

 𝑦(𝑡) = 0. Since 𝑥(𝑡) ≤ 𝑦(𝑡), then 𝑙𝑖𝑚
𝑡→∞

 𝑥(𝑡) = 0. 

 

Case II. Next, suppose that 𝑧(𝑡) > 0 for 𝑡 ≥ 𝑡2 > 𝑡1. Then 0 < 𝑙𝑖𝑚
𝑡→∞

𝑦(𝑡) < ∞ as 𝑙𝑖𝑚
𝑡→∞

 𝑗(𝑡) = 0. Since 𝑧(𝑡) > 0, by 

Lemma 1, any one of the cases (a)-(h) hold. Our claim in all the cases,  lim 𝑖𝑛𝑓
𝑡→∞

 𝑥(𝑡) = 0. If not, let the limit be 𝑙1 >

0. For some ϵ > 0, there exists 𝑡3 ≥ 𝑡2 such that 𝑥(𝑡) > 𝑙1 − 𝜖 > 0 for t ≥  𝑡3 > 𝑡2,𝑡3 ∈ [𝑡2,∞)𝕋. So, (10) implies  

𝐷4𝑧(𝑡) ≤ −𝑔(𝑡)𝐺(𝑙1 − ϵ)   (or)  𝑔(𝑡)𝐺(𝑙1 − ϵ) ≤ −𝐷4𝑧(𝑡) 

 

Suppose one of the cases (a), (b), (c)  and (𝑒) hold. Then integrating the last inequality, from 𝑡3 to 𝑡, we obtain 

𝐺(𝑙1 − ϵ) ∫ 𝑔(𝜃)∆𝜃

𝑡

𝑡3

≤ −𝐷3𝑤(𝑡) + 𝐷3𝑤(𝑡3) < 𝐷3𝑤(𝑡3) 

Since 𝑙𝑖𝑚
𝑡→∞

𝐷3𝑧(𝑡) > 0, then by taking the limit as 𝑡 → ∞ in the last inequality, we obtain  

∫ 𝑔(𝜃)∆𝜃 < ∞
∞

𝑡3
, a contraction to (𝐴6). From Lemma 1, we have 𝑙𝑖𝑚

𝑡→∞
 𝑦(𝑡) = 0. Since 𝑥(𝑡) ≤ 𝑦(𝑡), so lim 

𝑡→∞
𝑥(𝑡) = 0. 

Suppose case (𝑑) holds. In this case also, we claim that lim 𝑖𝑛𝑓 
𝑡→∞

𝑥(𝑡) = 0. If it is not possible, let the limit be 𝑙2>0. 

For some ϵ > 0, there exists 𝑡3 > 𝑡2 such that 𝑥(𝑡) > 𝑙2 −  ϵ > 0 for 𝑡 ≥ 𝑡3. Hence, (10) implies 

𝑔(𝑡)𝐺(𝑙2 −  ϵ) ≤ −𝐷4𝑧(𝑡)) 

 

Integrating the last inequality from 𝑡3 to 𝑡, we obtain  

−𝐷3𝑧(𝑡) ≥ −𝐷3𝑧(𝑡3) + 𝐺(𝑙2 − ϵ) ∫ 𝑔(𝜃)∆𝜃

𝑡

𝑡3

 

Again, integrating the last inequality from 𝑡3 to 𝑡, we obtain  

−𝐷2𝑧(𝑡) ≥ 𝐷2𝑧(𝑡2) + 𝐺(𝑙2 − ϵ) ∫
1

𝑝3(𝑠)

𝑡

𝑡3

∫ 𝑔(𝜃)∆𝜃∆𝑠

𝑠

𝑡3

 

Further, integrating the proceeding inequality from 𝑡3 to 𝑡, we obtain  

−𝐷1𝑧(𝑡) ≥ −𝐷1𝑧(𝑡3) + 𝐺(𝑙2 − ϵ) ∫
1

𝑝2(𝑠)

𝑡

𝑡3

∫
1

𝑝3(𝑢)

𝑠

𝑡3

∫ 𝑔(𝜃)∆𝜃

𝑢

𝑡3

∆𝑢∆𝑠

≥ 𝐺(𝑙2 − ϵ) ∫
1

𝑝2(𝑠)

𝑡

𝑡3

∫
1

𝑝3(𝑢)

𝑠

𝑡3

∫ 𝑔(𝜃)∆𝜃

𝑢

𝑡3

∆𝑢∆𝑠 

Again, integrating the above inequality from 𝑡3 to 𝑣, we obtain 

𝑧(𝑡3) ≥ 𝐺(𝑙2 − ϵ) ∫
1

𝑝1(𝑡)

𝑣

𝑡3

∫
1

𝑝2(𝑠)

𝑡

𝑡3

∫
1

𝑝3(𝑢)

𝑠

𝑡3

∫ 𝑔(𝜃)∆𝜃

𝑢

𝑡3

∆𝑢∆𝑠∆𝑡 

which is a contradiction to (𝐴2). Hence, by Lemma 1, 𝑙𝑖𝑚
𝑡→∞

 𝑦(𝑡) = 0. Thus, 𝑙𝑖𝑚
𝑡→∞

 𝑥(𝑡) = 0. Suppose cases (𝑓) or (𝑔) 

hold. In this also, first we claim lim 𝑖𝑛𝑓
𝑡→∞

 𝑥(𝑡) = 0. By proceeding as in the previous cases, we have 

𝐷4𝑧(𝑡) ≤ −𝑔(𝑡)𝐺(𝑙3 −  ϵ) 
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Or 

 −𝐷4𝑧(𝑡) ≥ 𝐺(𝑙3 −  ϵ)𝑔(𝑡) 

 

Integrating, the last inequality from 𝑡3 to 𝑡, we obtain  

−𝐷3𝑧(𝑡) ≥ −𝐷3𝑧(𝑡3) + 𝐺(𝑙3 − ϵ) ∫ 𝑔(𝜃)∆𝜃

𝑡

𝑡3

 

Again, integrating the preceeding inequality from 𝑡3 to 𝑡, we get 

𝐷2𝑧(𝑡3) ≥ 𝐷2𝑧(𝑡) + 𝐺(𝑙3 − ϵ) ∫
1

𝑝3(𝑠)

𝑡

𝑡3

∫ 𝑔(𝜃)∆𝜃∆𝑠

𝑠

𝑡3

≥ 𝐺(𝑙3 − ϵ) ∫
1

𝑝3(𝑠)

𝑡

𝑡3

∫ 𝑔(𝜃)∆𝜃∆𝑠

𝑠

𝑡3

 

We get a contradiction, due to (𝐴4). Thus, by Lemma 1, 𝑙𝑖𝑚
𝑡→∞

𝑦(𝑡) = 0. So, 𝑙𝑖𝑚
𝑡→∞

𝑥(𝑡) = 0. Suppose case (ℎ) holds, in 

this case also, we claim lim 𝑖𝑛𝑓
𝑡→∞

 𝑥(𝑡) = 0. By proceeding as in the previous cases, we have 

−𝐷4𝑧(𝑡) ≥ 𝐺(𝑙4 −  ϵ)𝑔(𝑡) 

 

Integrating the last inequality from 𝑡3 to 𝑡, we obtain  

−𝐷3𝑧(𝑡) ≥ −𝐷3𝑧(𝑡3) + 𝐺(𝑙4 − ϵ) ∫ 𝑔(𝜃)∆𝜃

𝑠

𝑡3

 

Again, integrating the last inequality from 𝑡3 to 𝑡, we get 

−𝐷2𝑧(𝑡) ≥ −𝐷2𝑧(𝑡3) + 𝐺(𝑙4 − ϵ) ∫
1

𝑝3(𝜃)

𝑡

𝑡3

∫ 𝑔(𝑢)∆𝑢∆𝜃

𝜃

𝑡3

 

Further, again integrating the proceeding inequality from t3 to t, we obtain  

𝐷1𝑧(𝑡3) ≥ 𝐷1𝑧(𝑡) + 𝐺(𝑙4 − ϵ) ∫
1

𝑝2(𝑠)

𝑡

𝑡3

∫
1

𝑝3(𝜃)

𝑠

𝑡3

∫ 𝑔(𝑢)∆𝑢

𝜃

𝑡3

∆𝜃∆𝑠 

This implies, 

𝐷1𝑧(𝑡3) ≥ 𝐺(𝑙4 − ϵ) ∫
1

𝑝2(𝑠)

𝑡

𝑡3

∫
1

𝑝3(𝜃)

𝑠

𝑡3

∫ 𝑔(𝑢)∆𝑢

𝜃

𝑡3

∆𝜃∆𝑠 

 

Since  𝑙𝑖𝑚
𝑡→∞

𝐷1𝑧(𝑡) exists, we get a contradiction due to (𝐴3). Thus, by Lemma 1, 𝑙𝑖𝑚
𝑡→∞

 𝑦(𝑡) = 0 and also 𝑙𝑖𝑚
𝑡→∞

𝑥(𝑡) = 0. 

Finally, we suppose that 𝑥(𝑡) < 0 for 𝑡 ≥ 𝑡0. By putting, 

 w(t)= -x(t) for  𝑡 ≥ 𝑡0 and by using (𝐴5), we obtain 𝑤(𝑡) > 0 and  

𝐷4 (𝑤(𝑡) + 𝑝(𝑡)𝑤(𝛼1(𝑡))) + 𝑔(𝑡)𝐺 (𝑤(𝛼2(𝑡))) − ℎ(𝑡)𝐻 (𝑤(𝛼3(𝑡))) = 0 

Proceeding same as 𝑥(𝑡) > 0 case, we obtain the desired results. Thus, completes the proof of the theorem. 

 

EXAMPLE 1. Consider the fourth order differentiable equation 

(𝑒𝑡 (𝑒𝑡(𝑒𝑡(𝑥(𝑡) + 𝑒−3𝑥(𝑡 − 1))
′
)

′

)
′

)
′

+ 𝑒3𝑡−45𝑥5(𝑡 − 3) − 

𝑒−9𝑡−6(1 + 𝑒−6𝑡+12)
𝑥(𝑡−2)

1+𝑥2(𝑡−2)
= 0                                                                      (11) 

For t>t2. Clearly, (𝐴0) − (𝐴2) and (𝐴5) of  Theorem 1 are satisfied. Hence, every bounded solution of (11) either 

oscillates or tends to zero as t→∞. Thus,  x(t) = 𝑒−3𝑡  is such a bounded solution of (11), which converges to zero as 

t→∞. 

 

THEOREM 2. Let −∞ < 𝑓4 ≤ 𝑓(𝑡) ≤ 𝑓5 < −1 holds. If (𝐴0)-(𝐴2) and (𝐴5) hold, then every bounded solution of 

(5) either oscillates or converges to zero as t→∞. 

 

http://www.ijrst.com/


International Journal of Research in Science and Technology                                           http://www.ijrst.com 

  

(IJRST) 2024, Vol. No. 14, Issue No. 3, Jul-Sep                                       e-ISSN: 2249-0604, p-ISSN: 2454-180X 

 

52 

 
INTERNATIONAL JOURNAL OF RESEARCH IN SCIENCE AND TECHNOLOGY 

 

Proof: Assume the contrary that, 𝑥(𝑡) is a bounded non oscillatory solution of (5) such that 𝑥(𝑡) > 0 for 𝑡 ≥ 𝑡1, 

𝑡1 ≥ 𝑡0. Using (7), (8) and (9), we obtain (10) for 𝑡 ≥ 𝑡1. Consequently, 𝑧(𝑡), 𝐷1𝑧(𝑡),  𝐷2𝑧(𝑡), 𝐷3𝑧(𝑡)  are monotonic 

functions on [𝑡1,∞)𝕋. Then any one of the cases (a)-(h) hold. Since 𝑗∆(𝑡) < 0, so 𝑗(𝑡) is monotonic. Since 𝑥(𝑡), 𝑓(𝑡) 

and 𝑗(𝑡) are bounded, it follows that 𝑦(𝑡) and 𝑧(𝑡) are bounded. Since 𝑗(𝑡) and 𝑧(𝑡) are monotonic, so lim 
𝑡→∞

𝑦(𝑡) and 

𝑙𝑖𝑚
𝑡→∞

𝑧(𝑡) both exists and finite. 

 

Case I. Suppose 𝑧(𝑡) > 0 for 𝑡 ≥ 𝑡2. Then 0 ≤ lim 
𝑡→∞

𝑧(𝑡) < ∞ . If 0 < lim 
𝑡→∞

𝑧(𝑡) < ∞, then proceeding same as in 

Case II of Theorem 1, we obtain lim 𝑖𝑛𝑓
𝑡→∞

 𝑥(𝑡) = 0 and by Lemma 1, lim 
𝑡→∞

𝑦(𝑡) = 0. This implies that, lim 
𝑡→∞

𝑧(𝑡) = 0. 

Hence, 

0 = lim 𝑖𝑛𝑓
𝑡→∞

 𝑦(𝑡) ≤ lim inf(𝑥(𝑡)
𝑡→∞

+ 𝑓5𝑥(𝛼1(𝑡))) 

 ≤ lim 𝑖𝑛𝑓
𝑡→∞

(𝑥(𝑡)) + 𝑓5lim 𝑠𝑢𝑝
𝑡→∞

 𝑥(𝛼1(𝑡)) 

= (1 + 𝑓5)lim 𝑠𝑢𝑝
𝑡→∞

 𝑥(𝑡)   (12) 

Since 1 + 𝑓5 < 0, then lim 𝑠𝑢𝑝
𝑡→∞

 𝑥(𝑡) = 0. Already, we have proved, lim 𝑖𝑛𝑓
𝑡→∞

 𝑥(𝑡) = 0 and hence 𝑙𝑖𝑚
𝑡→∞

 𝑥(𝑡) = 0. 

 

Case II. Suppose, 𝑧(𝑡) < 0 for 𝑡 ≥ 𝑡2 > 𝑡1. Then−∞ < 𝑙𝑖𝑚
𝑡→∞

𝑧(𝑡) ≤ 0. If −∞ < 𝑙𝑖𝑚
𝑡→∞

𝑧(𝑡) < 0, then −∞ <

𝑙𝑖𝑚
𝑡→∞

𝑦(𝑡) < 0. Proceeding same as in Case II of Theorem 1, we can show that 

lim 𝑖𝑛𝑓
𝑡→∞

 𝑥(𝑡) = 0. Hence by Lemma 1, 𝑙𝑖𝑚
𝑡→∞

 𝑦(𝑡) = 0. Thus, by (12), 𝑙𝑖𝑚
𝑡→∞

 𝑥(𝑡) = 0.  

Finally, we suppose that 𝑥(𝑡) < 0 for 𝑡 ≥ 𝑡0. By taking, w(t)= -x(t) for  𝑡 ≥ 𝑡0 and by using (𝐴5), we obtain 𝑤(𝑡) >

0 and  

𝐷4 (𝑤(𝑡) + 𝑝(𝑡)𝑤(𝛼1(𝑡))) + 𝑔(𝑡)𝐺 (𝑤(𝛼2(𝑡))) − ℎ(𝑡)𝐻 (𝑤(𝛼3(𝑡))) = 0 

Proceeding same as 𝑥(𝑡) > 0 case, we obtain the desired results. Thus, completes the proof of the theorem. 

 

EXAMPLE 2. Consider the difference equation 

∆ (𝑒𝑛∆ (𝑒𝑛∆ (𝑒𝑛∆(𝑥(𝑛) − 𝑒3𝑥(𝑛 − 1))))) + 𝑒2𝑛−9𝑥5(𝑛 − 1) − 𝑒−4𝑛−6(1 + 𝑒−6(𝑛−2))
𝑥(𝑛−2)

1+𝑥2(𝑛−2)
= 0,    n ≥  2 .                                                                                   

(13) Clearly, all the conditions of (𝐴0)-(𝐴2) and (𝐴5) of Theorem 2 are satisfied. Hence, every bounded solution of 

(13) is either oscillatory or converges to zero as t→∞. Thus, 𝑥(𝑛) = 𝑒−3𝑛 is such a bounded solution of (13) , which 

converges to ‘0’. 

 

THEOREM  3. Let -1<𝑓6 ≤ 𝑓(𝑡) ≤ 0. If (𝐴0)-(𝐴2) and (𝐴5) hold, then every bounded solution of (5) either 

oscillates or converges to zero as t→∞. 

 

Proof: Assume the contrary, that 𝑥(𝑡) is a bounded non oscillatory solution of (5) such that 𝑥(𝑡) > 0 for 𝑡 ≥ 𝑡1 ≥ 𝑡0. 

Using (7), (8) and (9), we obtain (10)  for 𝑡 ≥ 𝑡1. Consequently, 𝑧(𝑡), 𝐷1𝑧(𝑡), 𝐷2𝑧(𝑡), 𝐷3𝑧(𝑡) are monotonic functions 

on [𝑡1,∞)𝕋. Thus  

𝑧(𝑡) > 0 or < 0 for 𝑡 ≥ 𝑡2 ≥ 𝑡1. Then any one of the cases (a)-(h) hold. Since 𝑥(𝑡), 𝑓(𝑡) is bounded, it follows that 

𝑦(𝑡) and 𝑧(𝑡) are bounded. 

 

Case I. Suppose 𝑧(𝑡) > 0 for 𝑡 ≥ 𝑡2. Then 0 ≤ 𝑙𝑖𝑚
𝑡→∞

𝑧(𝑡) < ∞. If 0 < 𝑙𝑖𝑚
𝑡→∞

𝑧(𝑡) < ∞, then proceeding same as in Case 

II of Theorem 1, we obtain lim 𝑖𝑛𝑓
𝑡→∞

 𝑥(𝑡) = 0 and hence by Lemma 1, 𝑙𝑖𝑚
𝑡→∞

 𝑦(𝑡) = 0. Hence, 

0 = lim 𝑠𝑢𝑝
𝑡→∞

 𝑦(𝑡) ≥ lim 𝑠𝑢𝑝
𝑡→∞

(𝑥(𝑡)) + 𝑓6𝑥(𝛼1(𝑡)) 

≥ lim 𝑠𝑢𝑝
𝑡→∞

 𝑥(𝑡) + 𝑓6lim 𝑠𝑢𝑝
𝑡→∞

 𝑥(𝛼1(𝑡)) 

= lim 𝑠𝑢𝑝
𝑡→∞

 𝑥(𝑡) + 𝑓6lim 𝑠𝑢𝑝
𝑡→∞

 𝑥(𝛼1(𝑡)) 
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= (1 + 𝑓6)lim 𝑠𝑢𝑝
𝑡→∞

 𝑥(𝑡)   (14) 

 

Since   1 + 𝑓6 > 0, then lim 𝑠𝑢𝑝
𝑡→∞

 𝑥(𝑡) = 0. Already, we have prove that lim 𝑖𝑛𝑓
𝑡→∞

 𝑥(𝑡) = 0 and hence 𝑙𝑖𝑚
𝑡→∞

 𝑥(𝑡) = 0. 

 

Case II. Suppose 𝑧(𝑡) < 0 for 𝑡 ≥ 𝑡2. Then −∞ < lim
𝑡→∞

𝑧(𝑡) ≤ 0. If −∞ < lim
𝑡→∞

𝑧(𝑡) < 0, then −∞ < lim
𝑡→∞

𝑧(𝑡) ≤ 0. 

Proceeding same as in Case II of Theorem 1, we can show that 𝑙𝑖𝑚𝑖𝑛𝑓
𝑡→∞

 𝑥(𝑡) = 0. Hence by Lemma I, 𝑙𝑖𝑚
𝑡→∞

 𝑦(𝑡) = 0. 

Thus by (14), we have 𝑙𝑖𝑚
𝑡→∞

 𝑥(𝑡) = 0. The case when 𝑙𝑖𝑚
𝑡→∞

 𝑧(𝑡) = 0, we have 𝑙𝑖𝑚
𝑡→∞

 𝑦(𝑡) = 0. So, 𝑙𝑖𝑚
𝑡→∞

 𝑥(𝑡) = 0 by (14). 

 

EXAMPLE 3. Consider 

(𝑒
𝑡

3⁄ (𝑒
𝑡

3⁄ (𝑒
𝑡

3⁄ (𝑥(𝑡) +
𝑒−1

2
𝑥(𝑡 − 1))

′

)

′

)

′

)

′

+
𝑒2𝑡

𝑒15 𝑥5(𝑡 − 3) − 𝑒−2−2𝑡(1 + 𝑒−2𝑡+4)
𝑥(𝑡−2)

1+𝑥2(𝑡−2)
= 0                                                                                                    

(15) 

for t ≥ 4. Clearly, all the conditions (𝐴0) − (𝐴2) and (𝐴5) of Theorem 3 are satisfied. Hence, every bounded solution 

of (15) either oscillates or converges to zero as t→∞. Thus, 𝑥(𝑡) = 𝑒−𝑡 is such a solution of (15), which converges to 

zero as t→∞. 

 

4. Oscillation Criteria for Non-homogeneous Equations with ∫
𝟏

𝒑𝒏(𝒕)
∆𝒕 < ∞

∞

𝒕𝒐
 

This section is devoted to study the oscillatory and asymptotic behaviour of solutions of forced equation (6) 

with suitable forcing function. 

 

(𝐴7) There exists a real valued continuously delta differentiable function F on[𝑡0,∞)𝕋 such that F(t) changes sign, 

𝑝1𝐹∆, 𝑝2(𝑝1𝐹∆)∆, 𝑝3(𝑝2(𝑝1𝐹∆)∆)∆ are all real-valued continuously differentiable functions on [𝑡0,∞)𝑇 and 

(𝑝3(𝑝2(𝑝1𝐹∆)∆)∆)∆ = 𝑘 and lim 𝑖𝑛𝑓
𝑡→∞

 𝐹(𝑡) = −∞, lim 𝑠𝑢𝑝
𝑡→∞

 𝐹(𝑡) = ∞ . 

 

THEOREM 4: Let 0 ≤ 𝑝(𝑡) < 𝑝 < ∞ holds. Assume that (𝐴0), (𝐴1), (𝐴5) and (𝐴7) hold, then every bounded 

solution of (6) is oscillatory. 

 

Proof: Let 𝑥(𝑡) be a non-oscillatory bounded solution of (6) such that 𝑥(𝑡) > 0 for 𝑡 ≥ 𝑡0. Setting 𝑦(𝑡) as in (7), (8) 

and (9). Set 

𝑣(𝑡) = 𝑧(𝑡) − 𝐹(𝑡) = 𝑦(𝑡) − 𝑗(𝑡) − 𝐹(𝑡)   (16) 

For 𝑡 ≥ 𝑡1, equation (6) becomes 

𝐿4𝑣(𝑡) = −𝑔(𝑡)𝐺 (𝑥(𝛼2(𝑡))) ≤ 0(≠ 0) 

for 𝑡 ∈ [𝑡1,∞)𝕋. Thus 𝑣(𝑡) is monotonic on [𝑡1,∞)𝕋. 

Suppose 𝑣(𝑡) > 0 for 𝑡 ≥ 𝑡1.Then 0 <𝑣(𝑡) + 𝑗(𝑡) = 𝑦(𝑡) − 𝐹(𝑡). Hence,  

lim 𝑠𝑢𝑝
𝑡→∞

 𝑦(𝑡) ≥ lim 𝑠𝑢𝑝
𝑡→∞

 𝐹(𝑡) → ∞, 

a contradiction to the fact that 𝑥(𝑡) is bounded and hence 𝑦(𝑡) is bounded. 

Next, suppose 𝑣(𝑡) < 0 for 𝑡 ≥ 𝑡1, then 𝑧(𝑡) < 𝑘(𝑡) < 𝐹(𝑡). 

So, lim 𝑖𝑛𝑓
𝑡→∞

 𝑦(𝑡) = −∞, a contradiction to the fact 𝑦(𝑡) > 0. This completes the proof of the theorem. 

 

EXAMPLE 4. Consider the fourth order differentiable equation 

(𝑒𝑡 (𝑒𝑡 (𝑒𝑡 (𝑥(𝑡) −
1

2
𝑥(𝑡 − 6𝜋))

′

)
′

)

′

)

′

+ (5𝑒3𝑡 + 𝑒−𝑡 + 𝑒4𝑡)𝑥(𝑡 − 2𝜋)−𝑒−𝑡(1 + cos2 𝑡)
𝑥(𝑡−4𝜋)

1+𝑥2(𝑡−4𝜋)
= 𝑒4𝑡 cos 𝑡

                                                                                      (17) 
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for 𝑡 ≥ 7𝜋. Clearly, all the conditions (𝐴0), (𝐴1), (𝐴5) and (𝐴7) of Theorem 4 are satisfied. Note that here 𝐹(𝑡) =

−
1

170
𝑒𝑡(sin 𝑡 + 4 cos 𝑡). Then, (𝑒𝑡(𝑒𝑡(𝑒𝑡𝐹(𝑡))′)′)′ = 𝑘(𝑡). Also, lim 𝑠𝑢𝑝

𝑡→∞
 𝐹(𝑡) = ∞ and lim 𝑖𝑛𝑓

𝑡→∞
 𝐹(𝑡) = −∞. 

Hence, every bounded solution of (17) oscillates. Thus, 𝑥(𝑡) = cos 𝑡 is such a solution of (17), which oscillates. 

 

5. Future work: 

(i) For nonhomogeneous equations (6), we need study the oscillatory criteria for negative ranges of 𝑓(𝑡). 

 (ii) We need study the oscillatory criteria of solutions of a class of higher order dynamic equation with quasi-

derivative of the form. 

𝐷𝑛 (𝑥(𝑡) + 𝑓(𝑡)𝑥(𝛼1(𝑡))) + 𝑔(𝑡)𝐺 (𝑥(𝛼2(𝑡))) − ℎ(𝑡)𝐻 (𝑥(𝛼3(𝑡))) = 0 

and  

𝐷𝑛 (𝑥(𝑡) + 𝑓(𝑡)𝑥(𝛼1(𝑡))) + 𝑔(𝑡)𝐺 (𝑥(𝛼2(𝑡))) − ℎ(𝑡)𝐻 (𝑥(𝛼3(𝑡))) = 𝑘(𝑡) 

for 𝑡 ∈ [𝑡0,∞)𝕋, where 𝕋 is a time scale such that sup 𝕋 = +∞ , 𝑡0(≥ 0) ∈ 𝕋 are studied under the assumption 

∫
1

𝑝𝑖(𝑡)
∆𝑡 < ∞, 𝑖 = 1, 2, 3, … , (𝑛 − 1)

∞

𝑡0

 

for various ranges of 𝑓(𝑡), where 𝐷𝑖𝑥(𝑡) = 𝑝𝑖𝐷𝑖−1
∆ 𝑢(𝑡), 𝑖 = 1, 2, 3, …, n. 
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