
83

International Journal of Research in Science And Technology

Software testing requires the use of a model to guide such efforts as test selection and test verification.

Often, such models are implicit, existing only in the head of a human tester, applying test inputs in an ad

hoc fashion. The mental model testers build encapsulates application behavior, allowing testers to

understand the application’s capabilities and more effectively test its range of possible behaviors. When

these mental models are written down, they become sharable, reusable testing artifacts. In this case, testers

are performing what has become to be known as model-based testing. Model-based testing has recently

gained attention with the popularization of models in software design and development. There are a number

of models of software in use today, a few of which make good models for testing.

Keywords-Software behavior models, Finite state machines, Test case generation

International Journal of Research in Science And Technology http://www.ijrst.com/

(IJRST) 2012, Vol. No. 2, Issue No. II, Apr-Jun ISSN: 2249-0604

“MODEL-BASED SOFTWARE TESTING”

VIVEK KUMAR

ABSTRACT

INTRODUCTION

There is an abundance of testing styles in the discipline of software engineering today. Over the

last few decades, many of these have come to be used and adopted by the industry as solutions to

address the increasing demand for assuring software quality. During the last ten odd years, perhaps

as an outcome of the popularization of object orientation and models in software engineering, there

has been a growth in black box testing techniques that are collectively dubbed model-based testing.

We open this discussion of model-based testing with a few definitions of common terms. Some of

the more popular software models are explored, and some guidelines for selecting models are

presented.

MODEL-BASED TESTING

Models

Simply put, a model of software is a depiction of its behavior. Behavior can be described in terms

of the input sequences accepted by the system, the actions, conditions, and output logic, or the

flow of data through the application’s modules and routines. In order for a model to be useful for

groups of testers and for multiple testing tasks, it needs to be taken out of the mind of those who

understand what the software is supposed to accomplish and written down in an easily

understandable form. It is also generally preferable that a model be as formal as it is practical.

With these properties, the model becomes a shareable, reusable, precise description of the system

under test. There are numerous such models, and each describes different aspects of software

behavior.

http://www.ijrst.com/

84

International Journal of Research in Science And Technology

International Journal of Research in Science And Technology http://www.ijrst.com/

(IJRST) 2012, Vol. No. 2, Issue No. II, Apr-Jun ISSN: 2249-0604

Models in Software Testing

We cannot possibly talk in detail about all software models. Instead, we introduce a subset of

models that have been useful for testing and point to some references for further reading.

3 UNDERSTANDING THE SYSTEM UNDER TEST

The requirement common to most styles of testing is a well-developed understanding of what the

software accomplishes. Forming a mental representation of the system functionality is a

prerequisite to building models. This is a nontrivial task as most systems today typically have

convoluted interfaces and complex functionality. Moreover, software is deployed within gigantic

operating systems among a clutter of other applications, dynamically linked libraries, and file

systems all interacting with and/or affecting it in some manner. To develop an understanding of an

application, therefore, testers need to learn about both the software and its environment.

• Identify the users of the system. Each entity that either supplies or consumes

system data, or affects the system in some manner needs to be noted. Consider user

interfaces keyboard and mouse input the operating system kernel.

Building the Model

In general, state model-based testers define high-level state abstractions and then refine these

abstractions into an actual state space. Enumerating the state space by hand is formidable except

when modeling some small subsystems. State abstractions are based on inputs and information

about the applicability of each input and the behavior that the input elicits. Indeed, the standard

definition of a state used in various methodologies.

Running the Tests

Although, tests can be run as soon as they are created, it is typical that tests are run after a

complete suite that meets certain adequacy criteria is generated. First, test scripts are written to

simulate the application of inputs by their respective users. Next, the test suite can be easily

translated into an executable test script. Alternatively, we can have the test generator produce the

test script directly by annotating the arcs with simulation procedures calls.

ORACLES AND AUTOMATION

Automation and oracles make interesting bed fellows. On the one hand, oracles are crucial to

making automation work. What good is it to execute one million tests cases if we cannot tell which

ones passed and which ones failed, On the other hand, automation itself makes writing an oracle

even more difficult Because manual testing is slow, fewer tests can be performed and oracles do

not have to be as comprehensive. Indeed, they must cover only those behaviors that the manual

tester has time to perform. Moreover, oracles for manual testing can also be manual because there

is usually time to verify screen output during the slow process of manual test execution.

http://www.ijrst.com/

85

International Journal of Research in Science And Technology

International Journal of Research in Science And Technology http://www.ijrst.com/

(IJRST) 2012, Vol. No. 2, Issue No. II, Apr-Jun ISSN: 2249-0604

CONCLUSION

Model-based testing, in all its simplicity, appears to be a useful and efficient testing method for

quickly reaching large test coverage in a system, without enormous testing costs. Because model-

based testing implies radical changes in the software design and testing processes, a full scale

adoption of the technique requires thorough evaluation of its benefits and drawbacks, before

seriously attempting to take it into use. Even though radical benefits and savings and even ten-fold

productivity improvements have been reported in the academics. As long as modeling is performed

one way or another in software projects, model-based testing will continue to have a certain

appeal, simply because of the reuse value provided by existing design models. Another appeal of

model-based testing is its flexibility, allowing a vast number of tests, with different objectives and

levels of coverage, to be developed with low cost and effort, once the model is ready.

REFERENCES

1. Apfelbaum, L. and Doyle, J., Model based testing. Proceedings of the 10th International

Software Quality Week, May 1997.

2. Binder, R. V., Testing object-oriented systems: models, patterns, and tools.

Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1999.

3. El-Far, I. K. and Whittaker, J. A., Model-based software testing. Encyclopedia of Software

Engineering, Marciniak, J. J., editor. John Wiley & Sons, Inc., 2001.

4. Hartman, A., Adaptation of model based testing to industry (presentation slides). Agile and

Automated Testing Seminar, Tampere University of Technology, Tampere, Finland, August

2006.

5. Rosaria, S. and Robinson, H., Applying models in your testing process. Information and

Software Technology, 42,12(2000), pages 815–824.

6. Veanes, M., Campbell, C., Schulte, W. and Kohli, P., On-the-fly testing

of reactive systems. Technical Report MSR-TR-2005-05, Microsoft Research, January 2005.

7. Zhen R. D., Model-driven testing with

UML 2.0. Proceedings of Second European Workshop on Model Driven Architecture,

Akehurst, D. H., editor, University of Kent at Canterbury, United Kingdom, August 2004.

http://www.ijrst.com/

