Oxaziridine are an important synthetic motif present in many natural products. α-hydroxyketones have been synthesized in many ways, including reduction of α-diketones, substitution of a hydroxyl for a leaving group and direct oxidation of an enolate. Oxodiperoxymolybdenum (pyridine)- (hexamethylphosphoric triamide) (MoOPH) and N-sulfonyloxaziridines are the most common electrophilic sources of oxygen implemented in this process. One advantage of using Nsulfonyloxaziridines is that higher chiral induction is almost invariably observed relative to MoOPH and other oxidants. High yield (77-91%) and dr (95:5 - 99:1) are reported for α-hydroxylation with the Evans' chiral auxiliary with N-sulfonyloxaziridine as the electrophile. Chiral induction has been demonstrated with many other chiral ketones and ketones with chiral auxiliaries, including SAMP and RAMP.
Keywords: reduction, hydroxyl, electrophilic sources, chiral auxiliaries, chiral ketones and ketones
Disclaimer: Indexing of published papers is subject to the evaluation and acceptance criteria of the respective indexing agencies. While we strive to maintain high academic and editorial standards, International Journal of Research in Science and Technology does not guarantee the indexing of any published paper. Acceptance and inclusion in indexing databases are determined by the quality, originality, and relevance of the paper, and are at the sole discretion of the indexing bodies.