Y Sahaya Vincy
PG Scholar, VLSI Design, Sardar Raja College of Engineering, Alangulam,Tirunelveli, Tamil nadu
M Vellapandian
Assistant Professor,Department of ECE, Sardar Raja College of Engineering, Alangulam,Tirunelveli, Tamil nadu
Download PDFDigital multipliers are among the most critical arithmetic functional units in many applications, such as the Fourier transform, discrete cosine transforms, and digital filtering. The throughput of these applications depends on multipliers, and if the multipliers are too slow, the performance of entire circuits will be reduced. Meanwhile, the negative bias temperature instability effect occurs when a pMOS transistor is under negative bias, increasing the threshold voltage of the pMOS transistor, and reducing multiplier speed. A similar phenomenon, positive bias temperature instability, occurs when an nMOS transistor is under positive bias. Both effects degrade transistor speed, and in the long term, the system may fail due to timing violations. Therefore, it is important to design reliable high-performance multipliers. In this paper, we propose an aging-aware multiplier design with novel adaptive hold logic (AHL) circuit. The multiplier is able to provide higher throughput through the variable latency and can adjust the AHL circuit to mitigate performance degradation that is due to the aging effect. Moreover, the proposed architecture can be applied to a column- or row-bypassing multiplier.
Keywords: Energy Efficient Multiplier; Adaptive Hold Logic; pMOS transistor
Disclaimer: Indexing of published papers is subject to the evaluation and acceptance criteria of the respective indexing agencies. While we strive to maintain high academic and editorial standards, International Journal of Research in Science and Technology does not guarantee the indexing of any published paper. Acceptance and inclusion in indexing databases are determined by the quality, originality, and relevance of the paper, and are at the sole discretion of the indexing bodies.