Bhavay Khatri
Heera Lal Public School, Delhi
Download PDF http://doi.org/10.37648/ijrst.v13i01.001
Due to a lack of awareness of its warning signs and preventative measures, skin cancer—one of the deadliest types of cancer—has seen a significant increase in mortality rates. Therefore, early detection at an early stage is essential to halting the spread of cancer. Although there are other types of skin cancer, melanoma is the most dangerous. However, melanoma patients have a 96% survival rate when detected early with straightforward and cost-effective treatments. The project aims to classify various kinds of skin cancer using image processing and machine learning. Melanoma is a type of skin cancer that can be fatal. If detected early, melanoma skin cancer can be completely treated. Because it directly correlates with death, early melanoma skin cancer detection is critical for patients. In this study, early melanoma skin cancer is detected and categorized using a variety of algorithms, including K-means clustering, neural networks, K-Nearest Neighbour, and Naive Bayes. The UK best omega replica watches online with Swiss movements are worth having! For more detailed information about best quality audemars piguet fake watches UK, you can browse this website.
Keywords: skin cancer; Melanoma; neural network
Disclaimer: Indexing of published papers is subject to the evaluation and acceptance criteria of the respective indexing agencies. While we strive to maintain high academic and editorial standards, International Journal of Research in Science and Technology does not guarantee the indexing of any published paper. Acceptance and inclusion in indexing databases are determined by the quality, originality, and relevance of the paper, and are at the sole discretion of the indexing bodies.